Pii: S0301-5629(01)00516-6
نویسندگان
چکیده
Ultrasonic contrast agents have been used to assist blood flow measurements. Several contrast-specific flow measurement techniques have been proposed during the last few years. Among them, a method based on relative enhancement of the backscattered signal as a function of time is of particular interest. This method is also known as the time-intensity method. The method is based on the indicator-dilution theory, and the time-intensity curve is used to derive blood flow-related parameters such as the flow rate and the blood mixing volume. Previous in vitro studies done by other research groups were mainly based on a perfusion model or an artery model. Results showed that several parameters derived from the time-intensity curve had a good correlation with the flow rate under certain conditions. However, the studies did not focus on factors such as mixing volume, mixing chamber configuration and different types of mixing chamber. In this paper, dependence of the time-intensity curve is further studied. Specifically, two types of blood-mixing chambers were constructed. One was a spherical compartment phantom with two different sizes (260 and 580 mL) and different inflow/outflow configurations. The other was a perfusion phantom consisting of dialysis cartridges with the volume ranging from 114 to 351 mL. The time intensities were also measured at both the input and the output of the mixing chamber. A commercial agent (Levovist ) and a self-made, albumin-based agent were used and the wash-out time constant and the mean transit time were derived for flow rates ranging from 500 to 1300 mL/min. For the perfusion phantom, results showed that the parameters had a good correlation with both the flow rate and the mixing volume. Results from the compartment phantom, on the other hand, indicated that the inflow/outflow configuration and the mixing size significantly affected the derived time constants. Potential applications of new volumetric flow estimation techniques based on both input and output intensities were also discussed. (E-mail: [email protected]) © 2002 World Federation for Ultrasound in Medicine & Biology.
منابع مشابه
Pii: S0301-5629(01)00472-0
The nonstationary variation in the noise performance of the cross-correlation-based strain estimator due to frequency-dependent attenuation and lateral and elevational signal decorrelation have been addressed theoretically in recent papers using the strain-filter approach. In this paper, we present the experimental verification and corroboration of the nonstationary effects on the strain estima...
متن کاملPii: S0301-5629(01)00411-2
This study consisted of two parts. In the first part, the contrast-transfer efficiency (CTE) in elastography was extended to account for continuous changes of modulus distribution. It was shown that, for a finite size background, the strain contrast approaches the modulus contrast in the case of Gaussian distributions. Thus, an increase in the CTE was obtained. For a fixed background size, it w...
متن کاملPii: S0301-5629(01)00444-6
Using platelet-rich plasma, we investigated the effect of 1.1-MHz continuous wave high-intensity focused ultrasound (HIFU) on platelet activation, aggregation and adhesion to a collagen-coated surface. Platelets were exposed for durations of 10–500 s at spatial average intensities of up to 4860 W/cm. To avoid heating effects, the average temperature in the HIFU tank was maintained at 33.8 4.0°C...
متن کاملPii: S0301-5629(01)00478-1
In this paper we propose a novel feature-based contrast enhancement approach to enhance the quality of noisy ultrasound (US) images. Our approach uses a phase-based feature detection algorithm, followed by sparse surface interpolation and subsequent nonlinear postprocessing. We first exploited the intensity-invariant property of phase-based acoustic feature detection to select a set of relevant...
متن کاملPii: S0301-5629(01)00442-2
Elastic properties of tendon were assessed by two different approaches. Six fresh bovine Achilles tendon specimens were used. The first approach directly measured Young’s modulus along the transverse direction (Eperpendicular) and the longitudinal direction (Eparallel), using a cyclic compression–relaxation method. Young’s moduli were derived based on the measured strain and stress values. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002